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This paper resumes a series of investigations devoted to the influence of ground motion on linear colliders
in the TeV energy range. We attempt to model a variety of measured ground motion data and then to calculate
the behavior of beams in the linear collider affected by this motion. An adequate description of ground motion
is found in the form of a two-dimensional power spectrumP(v,k) that carries information both about the time
and space dependences of displacements. We then discuss the use of this spectrum to calculate the time
evolution of beam position and beam size at the interaction point. A few approximations of this spectrum for
typical seismic conditions are proposed for a wide range ofv and k based on the results of absolute and
relative seismic measurements. Examples of calculations of the time evolution of the beam size and position in
the final focus system of a linear collider are presented. Estimations of the influence of feedback are made.

PACS number~s!: 41.75.Ht, 29.17.1w, 29.27.2a, 41.85.2p

I. INTRODUCTION

A. Linear colliders

In order to allow an effective search of new particles,
e1e2 linear colliders envisioned for the future@1# should
provide a center of mass energy in the range of 300 GeV21
TeV with a luminosity as high as 1033–1034 cm22 s21.
Given the expression of the luminosity

L5 f repN
2/~4psx*sy* !, ~1!

where f rep is the repetition rate of collisions of thee1 and
e2 bunches,N is the number of particles per bunch and,
sx* andsy* are the transverse rms sizes of the bunch at the
collision point, the possible set of parameters of the existing
projects@2# is as follows: repetition ratef rep5 10–1000 Hz,
number of particles N51010–1011, horizontal size
sx*50.25–2mm, and vertical sizesy*53–30 nm.

One of the most critical parameters is the extremely small
vertical size of the beam at the interaction point and therefore
the very small value required of the vertical emittance of the
beam. Proper alignment of the focusing and accelerating el-
ements of a linear collider is necessary to achieve high lumi-
nosity. The most obvious effect of misaligned focusing
lenses is that thee1 ande2 bunches can simply miss each
other at the collision point. Even if the bunches collide, their
emittance can already be degraded during acceleration in the
linear accelerators or dispersion can appear in the focusing
section before collision, due to misalignment. This degrada-
tion affects, in turn, the vertical spot size and the luminosity.

The tolerable misalignments are so small~less than 1
mm! that no conventional measurement technique can be
used to maintain the required alignment. Moreover, a once
aligned collider does not stay aligned forever because of
ground motion. The only way to achieve required luminosity
seen up to now is to have a rough prealignment with con-

ventional technique and then to use the bunches themselves
as sensors to detect the position of misaligned elements rela-
tive to the trajectory of the bunch. Therefore the alignment
should be ‘‘beam based’’ and also it should be dynamical
~i.e., the alignment should work continuously!, to provide
required stability of the alignment. A prototype of such a
scheme has already been applied on the Stanford Linear Col-
lider ~SLC! @3#.

The goal of this work is to derive a mathematically con-
sistent model describing ground motion and to use it to pre-
dict the evolution of the beam properties with time over wide
range of time intervals—from a few pulses to years—
eventually taking the dynamical beam-based alignment into
account.

B. Ground motion description

When the importance of ground motion for a linear col-
lider was recognized, attempts were made to get the neces-
sary information to describe this motion. A pioneering work
was done at the Stanford Linear Accelerator Center~SLAC!
@4# to understand the influence on a 50-GeV linear collider,
for which the ground motion was already not negligible. For
TeV linear colliders many studies have been made. Investi-
gations of different ground motion characteristics were made
at Protrino Branch of the Institute of Nuclear Physics@5# and
since then similar studies have been made and are being
continued by many other workers at Novosibirsk Institute of
Nuclear Physics~INP! @6#, Organisation Europe´enne pour la
Recherche Nucle´aire ~CERN! @7#, National Laboratory for
High Energy Physics~KEK! @8#, Deutsches Elektronen-
Synchrotron~DESY! @9#, Finland Research Institute for High
Energy Physics~SEFT! @10#, and Stanford Linear Accelera-
tor Center~SLAC! @11#, etc. One can mention also seismic
studies performed for large circular colliders@12,13#, be-
cause some results obtained there can be interesting for a
linear collider as well.

Let us briefly describe what kinds of measurements have
been performed and what kind of information has been ob-
tained in these studies. All measurements of ground motion
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can be grouped into two categories. The first one is the so-
called absolute measurements. In this case usually an accel-
erometer with a pendulum inside is used. One measures ac-
celeration of a single point of the ground surface versus time.
If the spectral analysis is then applied, the spectrum of dis-
placements can be obtained from the acceleration spectrum.
This method is called absolute measurements because the
measurements are made relative to an inertial frame. The
second category consists of the relative measurements. In
this case the relative positions of two separated points of the
surface are measured. Some reference line~strained wire,
laser beam, water level in gravity field, etc.! must be used in
this case. The first method is sometime refined: simultaneous
measurements with two distanced and synchronized sensors
can give correlation information.

1. Absolute measurements

Let us consider data treatment methods used in measure-
ments of absolute motion. Once a time-dependent signal
x(t) is measured, one can introduce its variances2 as

s25^x2&5 lim
T→`

1

TE2T/2

T/2

x2~ t !dt. ~2!

Here and below we assume that the mean value of the signal
is zero^x&50, namely,

^x&5 lim
T→`

1

TE2T/2

T/2

x~ t !dt50. ~3!

Performing the spectral analysis of the signal is useful
because different vibration frequencies cause different ef-
fects on the linear collider and should be considered in dif-
ferent ways. One should note, however, that a seismic signal
is a random process, so the power spectral density~power
spectrum in brief! should be considered instead of the usual
Fourier spectrum.

The power spectral density is defined as

p~ f !5 lim
T→`

1

TU E2T/2

T/2

x~ t !e2 ivtdtU2. ~4!

Here f is frequencyf5v/2p. One of the main properties of
the power spectrum is that its integral gives the variance

s25E
2`

`

p~ f !d f . ~5!

In practice the measurement timeT is limited and the
power spectrum can only be estimated by averaging spectra
obtained from several measurements. The number of averag-
ingsnav fixes the precision of the estimation of this spectrum
(Dp/p}1/Anav !; usually it is not better than a few percent.
Also, the measurement technique with discrete sampling re-
quires one to replace the integral by a discrete sum in the
formulas. Data measured over timeT at sampling frequency
f 0 allow one to find a spectrum in the range from 1/T to
f 0/2. The dimension of the power spectrum is m2/Hz if
x(t) is the position; sometimes it is more convenient to use

mm2/Hz. This kind of spectrum is usually plotted in loga-
rithmic scale because of large changes over the frequency
range.

Typical power spectra measured in different places are
shown in Fig. 1. In this figure the measurements at Protvino
~Russia! by Baklakovet al. in the 30-m underground tunnel
of the UNK storage ring under construction@5#; at CERN by
Juravlevet al., 80 m underground, in the Large Electron-
Positron ~LEP! tunnel @7#; in a 100-m-deep~in horizontal
direction! cave in a 30-m-high hill near Helsinki, Finland
@10#; and by Shiltsevet al. in the underground Hadron Elec-
tron Ring Accelerator~HERA! tunnel at DESY @9# are
shown. All spectra shown in Fig. 1, except the one by Shilt-
sev, were measured during a quiet time~i.e., night, when
there is a minimum of cultural noises!. The lines shown on
the plot are approximations to be explained later. The fre-
quency band of the data presented in this figure is limited by
the working frequency range of the sensor, that is, the range
where the signal to noise ratio of the electronics is sufficient.
In order to cover a wider frequency band, different sensors
with different self-frequencies of pendulum must be used.

The power spectra in Fig. 1 grow very fast with decreas-
ing frequency. In quiet conditions they behave approxi-
mately asp( f )}1/f 4 ~compare with the straight line in this
figure that corresponds to 1/f 4) in a rather wide frequency
band. Sources that contribute to the spectrum are different at
different frequencies. At very low frequencyf,1 Hz the
main sources of ground motion are atmospheric activity, wa-
ter motion in the oceans, temperature variations, etc. A well
known example of the influence of water motion in the
oceans is the peak in the band 0.1–0.2 Hz. This peak, is
generated by the interaction of ocean waves with the coast-
line. Its amplitude depends slightly on the distance from the
oceans: a significant reduction can be observed only in the
central part of continents@6#. In general, vibrations in this
low-frequency bandf,1 Hz depend not only on the local
conditions, but rather remote sources can give significant
contribution to this slow motion.

From the other side, in the bandf.1 Hz, the human
produced noises usually dominate and the power spectrum
depends very much on the local conditions~location of

FIG. 1. Power spectra of absolute ground motion, measured in
Protvino by Baklakovet al. @5#; CERN, Juravlevet al. @7#; DESY,
Shiltsevet al. @9#; and Juravlevet al. in Finland @10#.
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sources of noises, depth of tunnel etc.!. For example, the
spectrum measured by Shiltsev at DESY presents much
larger amplitudes atf.1 Hz due to noises generated by
different technical devices of the HERA collider and of the
city.

The power spectrum allows one to identify contributions
from different frequencies according to the formula

s2~ f 0, f, f 1!5E
f0

f1
p~ f !d f . ~6!

This is illustrated by Fig. 2, where the contributions of dif-
ferent frequency bands to the rms amplitude are shown. This
plot is the result of continuous measurements by Juravlev
et al. in Finland in the Hiidenvesi cave@10#. In the high-
frequency part the rms amplitude is one order of magnitude
larger during the working hours than during the nighttime
and holidays. The smooth variation of amplitudes in the low-
frequency part is due mainly to weather variations above the
ocean and sharp isolated peaks are earthquakes, usually re-
mote.

One should note that since the power spectrum of a real
signal is symmetrical, it is sufficient to consider only positive
frequencies with the proper normalization. In all figures in
this paper the measured spectra are defined so that the inte-
gral for only positivef in ~5! is equal to the variance~2!.
However, in all formulas@except ~6!# we will use spectra
defined from2` to1` in such a way that~5!, for example,
is valid.

2. Correlation measurements

The absolute measurements, performed simultaneously by
two sensors, allow one to find the mutual power spectrum of
two signalsx1 andx2:

p12~ f !5 lim
T→`

1

TE2T/2

T/2

x1~ t !e
2 ivtdtE

2T/2

T/2

x2* ~ t8!eivt8dt8.

~7!

In contrast withp( f ) this spectrum is complex. For a real
signal x(t) one can writep12* 5p21, so that the imaginary
part is given by

2i Im~p12!5p122p21. ~8!

One can note that if characteristics of ground motion do not
depend on the location, then this imaginary part should be
equal to zero. This condition is assumed to always be satis-
fied.

The normalized mutual power spectrum can also be used:

N12~ f !5
p12

Ap1p2
. ~9!

The real part ofN12 is called ‘‘correlation’’ and its module is
called ‘‘coherence.’’ According to the above-mentioned as-
sumption,N12 will be real andp15p2 andN12 will depend
on the distance between points but not on their position.

Perfect correlation between the two points corresponds to
N12( f )51, the absence of correlations toN12( f )50, and per-
fect anticorrelation~phase shiftp) to N12( f )521. Similar
to the power spectrum, in practice the estimation of the cor-
relation can be found by averaging several measurements.
The relative precision in this case depends also on the cor-
relation itself:

DN12

N12
}A12N12

nav
. ~10!

In a simple case when there are only transverse waves that
propagate along the line connecting two probes, the waves
have phase velocityv, there is no dissipation, and the
sources of the waves are remote enough, the correlation~9!
will be equal to

N12~ f !5cos~vL/v !, ~11!

whereL is the distance between the probes. If the distribu-
tion of the directions of propagation is uniform on the azi-

FIG. 2. The rms amplitude of different frequency bands versus
time. The measurements were taken in Finland, October–November
1994 @10#.

FIG. 3. Correlation spectra of ground motion measured at
CERN in the LEP tunnel@7#. The distances between sensors were
225, 500, 1000, and 2000 m.
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muthal angleu, then the correlation is equal to the average
^cos@vL/v cos(u)#&u , which gives Bessel function

N12~ f !5J0~vL/v !. ~12!

An example of the correlation measured in the CERN
LEP tunnel by Juravlevet al. @7# is shown in Fig. 3. Differ-
ent curves correspond to different distances between sensors.
One can see a good correlation in the low-frequency part
f.0.1 Hz of the spectrum. At high frequencies the correla-
tion between separated probes disappears. These measure-
ments have shown that the correlation atf.0.1 Hz can be
approximated by~11! with the parameterv( f ) close to the
velocity of sound~about 3000 m/s atf'0.1 Hz in that case!.

At smaller frequencyf,0.1 Hz decreasing correlation
has been observed@5,7,9#, resulting in much smaller values
of v( f ), which may hint at the presence of non-wave-like
motion at these frequencies. However, since the signal to
noise ratio of the probes used becomes poor also at these
frequencies, further studies seem to be necessary, preferably
using cross-checks by relative measurements.

3. Relative measurements

Measurements of relative motion give information about
the quantityx1(t)2x2(t). The power spectrumr(v,L) as-
sociated with it is given by

r~v,L !5 lim
T→`

1

TU E2T/2

T/2

@x1~ t !2x2~ t !#e
2 ivtdtU2 ~13!

in such a way that

^@x~ t,s1L !2x~ t,s!#2&5E
2`

`

r~v,L !dv/~2p!. ~14!

It depends explicitly on the distanceL between points of
measurements. Note thatr(v,L) and p(v) have the same
dimension~m2/Hz!.

An example of the spectrum of relative motion of two
points separated by 5 m is shown in Fig. 4. The measure-

ments were performed by Baklakovet al. in the laboratory
building in Protvino using the strained wire technique with
pickup sensors mounted on the tables@14#. On the same plot
the results of the absolute measurements by Baklakovet al.
at the same place are shown. The amplitudes in this spectrum
are large compared with the quiet spectra of Fig. 1 because
of noisy conditions in the laboratory. This example demon-
strates the typical behavior of such spectra: the amplitudes of
relative motion are much smaller than those of absolute mo-
tion at low frequencies~the spectrum of relative motion
grows only as 1/f 2). At some high frequency where correla-
tions disappear they become similar.

Figure 4 shows results of relative measurements for rela-
tively high frequencies. There is also a lot of data about
relative measurements performed with the geodesic tech-
nique. The time scale of these data is usually days or years
and distances are of the order of hundreds of meters. A typi-
cal example of such data is the measurements of the long
time scale displacements of the SLC tunnel studied by Fis-
cher and Morton@15#.

It was found in@5# that data about slow relative motion
measured in different sites of the world can be described by
a simple expression

^DX2&5ATL, ~15!

whereDX is the relative displacement after a timeT of the
two points separated by a distanceL. A is a constant whose
value was found to beA'1024 mm2 s21 m21 and the
variation of this value for different places in the world is not
much more than one order of magnitude@5,16#. In some
special places with granite or limestone surroundings, the
valuesA'1026 mm2 s21 m21 were found@17#. The for-
mula ~15! is known as the ‘‘ATL law.’’

One can see that the displacement in~15! is proportional
to the square root of the time: this stresses the random, non-
wave-like diffusional character of the slow relative motion.
The square root dependence on the distanceL can be under-
stood by supposing that the number of steplike breaks that
appear between two points is proportional to the distance
between them. There are also more complex explanations of
these dependences; for example, in@18#, a fractal model of
ground was developed to explain this behavior.

The ranges ofT and L where theATL law is valid are
very wide. In@16# it was summarized that~15! is confirmed
by measurements of ground motion in different accelerator
tunnels in the range from minutes to tens of years and from
a few meters to tens of kilometers.

Although theATL law was found from the direct analysis
of measurements of ground motion, its most interesting con-
firmations come from the observations of beam motion in
large accelerators produced by displacements of the focusing
elements. For example, the measurements of the closed orbit
motion in the HERA circular collider have shown that the
power spectrum of this motion corresponds to theATL law
in a wide frequency range, fromf'1 Hz ~for larger frequen-
cies cultural noises were significant! down to f'1026 Hz
~limited by the time of these observations! @19#.

FIG. 4. Comparison of the spectrum of relative ground motion
@at a distance of 5 m between probes~circles!# with the spectrum of
absolute ground motion~stars!, measured by Baklakovet al. in the
laboratory building in Protvino@14#.
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C. Using measured data

Let us discuss now how the available measured data of
ground motion can be used for studying the stability of a
linear collider. One can see that the power spectrum of ab-
solute motion itself does not contain all the necessary infor-
mation. Indeed, measurements show~see above! that this
spectrum behaves approximately asp( f )}1/f 4 in a rather
wide frequency range. One can notice that this spectrum, if it
behaves so at low frequencies too, gives an infinite value for
the variance that is typical of a random signal. This is so also
for the difference of the absolute displacements with finite
time separationt. The associated variance is given by the
integral @20#

^@x~ t1t!2x~ t !#2& t5E
2`

`

p~ f !2@12cos~vt!#d f , ~16!

which is also infinite in this assumption@21#. Equation~16!
shows that the low-frequency motion (v!1/t) contributes
to the integral with an attenuation factor (vt)2, but it is still
not enough to make the integral finite. The integral on the
power spectrum over a certain frequency band, as in~6!, also
cannot be used easily without additional correlation informa-
tion. However, for the stability of linear colliders one is only
interested in relative displacements between two elements
separated by a distanceL and hence in the spectrum of rela-
tive motionr(v,L).

Let us try to obtain this spectrumr(v,L) from the spec-
trum of absolute motion. In principle, it can be done if si-
multaneous absolute measurements by two probes are per-
formed. These spectra are connected as follows:

r~v,L !5p1~v!1p2~v!2p12~v,L !2p21~v,L !, ~17!

wherep1 ,p2 andp12,p21 are the usual and mutual spectra,
respectively. Assuming that the spectra of these two signals
are the samep15p25p(v), one can rewrite~17! using the
definition of the correlation as

r~v,L !5p~v!2$12Re@N12~v,L !#%. ~18!

At first sight it seems that the spectrum of relative motion
can be extracted from the spectrum of absolute motion using
~18!. But, in practice, it is possible only in a certain fre-
quency range. At high frequencies the signal to noise ratio of
the instrument becomes poor. At low frequencies this ratio
can be good, but in this case the interesting uncorrelated part
of motion usually has much smaller amplitudes than the cor-
related part. So, because of the intrinsic imperfection of ab-
solute measurements, the correlation cannot be measured
with the necessary precision and formula~18! cannot be used
below and above of certain frequencies. Typically,~18! can
be used only for 0.1, f,100 Hz.

The spectrum of relative motion can be obtained, of
course, directly from relative measurements. The problem
here is that the measurements can be performed only in some
limited region of parameters~frequency or distance!. For ex-
ample, measurements by a water level system give informa-
tion only about slow motion. The strained wire technique can
measure fast vibrations also, but the distance between mea-
sured points is limited for this method as for the previous
one. Optical methods have problems of accuracy over long

distances. So there is no ideal instrument for measuring the
characteristics of ground motion. Therefore both absolute
and relative measurements should be used in complement to
each other in order to cover a wider range of parameters.

There is one essential drawback of using the spectrum of
relative motionr(v,L): it does not separate contributions
from different spatial wavelengths to the relative motion of
two points. These contributions may have very different im-
pact on the linear collider stability, especially for wave-
lengths close to harmonics of betatron wavelengths. This is
the main reason why a new mathematical tool describing
ground motion needs to be built that incorporates results
from both absolute and relative measurements and at the
same time is adequate to calculate beam stability in linear
colliders.

II. GENERALIZED DESCRIPTION OF GROUND MOTION

A. Two-dimensional power spectrum of ground motion

As already mentioned, TeV linear colliders are very sen-
sitive to ground motion. But, of course, if ground motion
would displace the linear collider as a whole rigid body, it
would not influence its operation. Rather smooth changes of
the shape of the collider do not have much of an effect either.
For example, vibrations with long spatial periods similar to
waves from the ocean have a very small influence on the
linear collider in spite of their large amplitudes. On the other
hand, vibrations with spatial periods of a few tens of meters
can have a great effect, even though their amplitudes are
much smaller. Thus it is necessary to have information about
both time and spatial characteristics of ground motion. An
adequate description of ground motion is through the two-
dimensional power spectrum proposed in@10#.

Let us denote bys the longitudinal position of an element
along a linear collider andx(t,s) the transverse position of
this element, which depends also on the timet. The displace-
mentx(t,s) is an absolute one, i.e., it is measured relative to
an infinitely remote object. We consider only transverse dis-
placements of elements because they are known to have the
most significant influence on a linear collider.

One can introduce a two-dimensional power spectrum of
this displacementx(t,s) as

P~v,k!5 lim
T→`

lim
L→`

1

T

1

LU E2T/2

T/2 E
2L/2

L/2

x~ t,s!e2 ivte2 iksdtdsU2,
~19!

wherek52p/l andl is the spatial period of displacements.
We will see later that this spectrum contains all the necessary
information for a linear collider.

The two-dimensional spectrum~19! contains information
about both relative and absolute motion. For example, it is
related to the one-dimensional spectrum by the formula

p~v!5E
2`

`

P~v,k!dk/2p. ~20!

The variance of the displacementx(t,s) is then given by

s25E
2`

` E
2`

`

P~v,k!dvdk/~2p!2. ~21!
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It should, of course, be infinite, as it is for the usual spec-
trum, since the integral extends down tov50.

Other spectral characteristics can be determined from this
two-dimensional power spectrum. For example, the real part
of the normalized mutual power spectrum~9! for two points
separated by the distanceL is equal to

Re@N12~v!#5
*0

`P~v,k!cos~kL!dk

*0
`P~v,k!dk

. ~22!

For a linear collider we have to know the behavior of the
relative displacements of two elements of the collider. Let us
assume for simplicity that at the beginning (t50) the col-
lider is perfectly aligned and let us introduce the misalign-
ment after the timeT: X(T,s)5x(t5T,s)2x(t50,s). Then
the variance of the relative misalignment over a distanceL
and after a timeT is given by

s2~T,L !5^@X~T,s1L !2X~T,s!#2&

5E
2`

` E
2`

`

P~v,k!2@12cos~vT!#

32@12cos~kL!#dvdk/~2p!2. ~23!

This is a main formula to evaluate linear collider stability
with the help of the two-dimensional power spectrum.

B. Approximation of the two-dimensional power spectrum

Unlike the absolutep(v) and relativer(v,L) power
spectra, the two-dimensional power spectrumP(v,k) is not
directly measured in an experiment. But if one knows
p(v) and r(v,L) for a wide enough range of parameters,
one can determine the two-dimensional power spectrum
through the identities

r~v,L !5E
2`

`

P~v,k!2@12cos~kL!#dk/2p ~24!

and, for the back transformation,

P~v,k!5E
0

`

cos~kL!@r~v,L5`!2r~v,L !#dL. ~25!

In ~25! r(v,L5`) is equal to 2p(v) @see ~18!# because
correlations vanish atL5`.

The approximation forr(v,L) will be made on the as-
sumption that the low-frequency part of motion is described
by theATL law, while the high-frequency part is produced
mainly by waves but with a small, poorly correlated high-
frequency tail of theATL law.

Let us consider the twodimensional spectrum that corre-
sponds to the motion described by theATL law ~15!, which
can be written as

P~v,k!5
A

v2k2
, ~26!

which can be easily shown by direct substitution of~26! into
~23! and comparison with~15!. The relative spectrum
r(v,L) for theATL law is then given by

r~v,L !5
AL

v2 . ~27!

We are going to use this formula as an approximation of
r(v,L) in the region of parameters where it does not con-
tradict measured data or where it is known to work. This
formula can be used as an approximation ofr(v,L) only in
the region of small frequencies because it behaves like
1/v2, while the spectrum of absolute motion in a quiet place
behaves like 1/v4. Thus, for some high frequencies~27! will
contradict to the conditionr(v,L)<2p(v), which follows
from ~18!. Therefore the spectrum of theATL law ~27!
should be corrected at high frequencies.

In order to correct~27! let us consider correlation mea-
surements at high frequencies. Atf.0.1 Hz the absolute
motion was found to be well correlated because of its wave-
like character. However, the limited precision of sensors
leaves room for the assumption that some fraction of motion
is uncorrelated. To find the upper limit of the effects one can
make the conservative assumption that all motion below the
resolution of the probes is uncorrelated. In this assumption
the uncorrelated part in measurements@7# corresponds ap-
proximately to the thin line in Fig. 1 given by
p(v)5B/2v4 with B51023 mm2/s3. Intending to find an
upper limit of the effect, one may suppose thatATL law is
valid as long as the conditionB/v4.AL/v2 is satisfied.
This results in the following approximation for ther(v,L)
of the ‘‘correctedATL law’’:

r~v,L !5HAL/v2 if 0,v,v0

B/v4 if v0,v,`,
~28!

wherev05(B/AL)1/2. From Eq.~28! one then obtains the
following approximation for the power spectrumP(v,k) of
the correctedATL law:

P~v,k!5
A

v2k2
@12cos~L0k!#, ~29!

with L05B/(Av2).
The exact result for the variance of the relative misalign-

ment corresponding to~29! is given, from Eq.~23!, by

^DX2&5ATL1ATL
2

p SSi~2x0!2
12cos~2x0!

2x0
D

1
BT3

6p S 2Si ~2x0!1
cos~2x0!

x0

1
sin~x0!@sin~x0!1x0cos~x0!#

x0
3 D , ~30!

wherex05T/2AB/(LA) and Si(x) is defined as

Si~x!52E
x

`sin~ t !

t
dt. ~31!

One can show from this formula that the chosen form of the
P(v,k) spectrum gives a square root dependence of the rela-
tive misalignment versus time for largeT ~corresponding to
theATL law!:
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^DX2&5ATL, T@T0 , ~32!

while for smallT the relative misalignment is just propor-
tional to the timeT:

^DX2&5AT2L/T0 , T!T0 , ~33!

whereT05p/2AAL/B. One can note that this linear depen-
dence of the rms displacement at small time is the general
property of the spectrum that drops fast enough with increas-
ing frequency@22#. In fact, with reasonable accuracy one can
use the simple formula

^DX2&'ATL
T

T1T0
~34!

as an approximation of~30!.
The contribution from elastic waves may be added to the

spectrumP(v,k) as

P~v,k!5
A

v2k2
@12cos~L0k!#1D~v!U~v,k!. ~35!

The functionU(v,k) describes the wave number distribution
of the waves with frequencyv. The expression

U~v,k!5H 2

Akmax2 2k2
if uku<kmax

0 if uku.kmax

~36!

corresponds to transverse waves propagating at the surface of
the ground with a uniform distribution over the azimuthal
angle, with kmax(v)5v/v i and v i the velocity of wave
propagation. The casesk50 andk5kmax correspond to the
waves propagating perpendicular and along the linear col-
lider correspondingly.

Since the integral overdk/(2p) of U(v,k) equals one,
the functionD(v) describes the contribution of these waves
to the absolute spectrump(v). Writing D(v) as

D~v!5
ai

11@di~v2v i !/v i #
4 ~37!

allows one to take into account the peak of the waves from
the oceans and also, because of the 1/v4 dependence, to add
some wave contribution at high frequencies. In order to
model more complex behavior of the spectrum, for example,
the in presence of cultural noises, a few terms
D(v)U(v,k) may be added toP(v,k); in that casei would
be the number of the peak. Assuming that the parameters of
~35! do not depend significantly onv or k, the four models
corresponding to different conditions or assumptions will be
considered in the following subsection.

C. Approximations for different conditions

We will consider four different models based on~35!. The
first three models have the same power spectrump(v) cor-
responding to quiet conditions, such as in the LEP or UNK
tunnels studied by Juravlevet al.or Baklakovet al.but with
a differentk dependence ofP(v,k). The fourth model will

correspond to conditions of the HERA DESY tunnel mea-
sured by Shiltsevet al.which is known to have large contri-
butions from cultural noises.

The parameters of the first model~model 1! are
A51024 mm2 s21m21 andB51023 mm2/s3. The single
peak described byv152p30.14 Hz for the frequency of
the peak,a1510 mm2/Hz for its amplitude,d155 for its
width, andv151000 m/s for the velocity. The resulting ap-
proximation of the two-dimensional spectrumP(v,k) for
model 1 is shown in Fig. 5@with the 12cos(j) term in ~35!
replaced by 1/(112/j2) to smooth the plot#. The absolute
power spectrum calculated from this analytic form of
P(v,k) is plotted in Fig. 1 as a solid thick line: one can see
that it is in good agreement with the LEP and UNK power
spectra~Juravievet al. and Baklakovet al., respectively!.
The calculated correlation functionN12(v,L) plotted in Fig.
6 behaves similarly to the measured one: it exhibits a de-
crease of correlation at high frequencies according to~12!
and also vanishes in the bandf50.01–0.1 Hz because of a
large uncorrelated part of motions assumed for this model.

Model 1 should be considered as giving an upper limit of
the effects of ground motion in quiet conditions since it as-
sumes a rather large part of uncorrelated motion in the high-

FIG. 5. Three-dimensional logarithmic~with decimal base
log10) plot of the power spectrumP(v,k) corresponding to model 1
of ground motion.

FIG. 6. Correlation spectraN12(v,L) calculated with the ana-
lytic model 1 ofP(v,k) for different distances between sensors.
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frequency band. Indeed, recent measurements by Adolphsen,
Mazaheri, and Slaton at SLAC@23# have shown that the
uncorrelated part is at least two orders of magnitude smaller
@24# for 0.03, f,3 Hz than it is assumed in model 1. More
realistic assumption about the high-frequency part of motion
results in model 2, which has the same parameters as model
1, but hasB51026 mm2/s3.

Model 2, on the other hand, has a rather large value of the
constantA, which can be considered as a pessimistic as-
sumption if the site of the next linear collider tunnel is cho-
sen properly or if an appropriate solid foundation~at least
under the central part of the collider! is made. From this
point of view one needs to consider also model 3, which is
the same as model 2 but hasA51026 mm2 s21 m21. This
model should be considered as corresponding to a good tun-
nel built in an appropriate place where the influence of cul-
tural noises is negligible.

One can also build an approximation~model 4! that
corresponds to seismic conditions with large contributions
from cultural noises~as in the HERA tunnel@9#!. The param-
eters areA51025 mm2 s21 m21 ~this value corresponds to
the recent measurements in HERA@19#!, B51023 mm2/s
3, and three additional peaks:v152p30.14 Hz, a1510
mm2/Hz, d155, and v151000 m/s for the first peak;
v252p32.5 Hz, a251023mm2/Hz, d251.5, and
v25400 m/s for the second; andv352p350 Hz,
a351027mm2/Hz, d351.5, andv35400 m/s for the third.
The thick dashed line in Fig. 1 shows the spectrum of abso-
lute motion, calculated fromP(v,k), corresponding to these
parameters. The parametersai anddi have been chosen to fit
the absolute spectrum, while the parametersv i have been
derived @25# from correlation measurements at the HERA
tunnel @26# and measurements of the closed orbit motion in
HERA @19#.

The four models listed above cover a wide enough range
of conditions or assumptions. The presented approximation
has, of course, some uncertainties, especially in the transition
from wave motion to diffusive motion, which could be im-
proved@27# if the relevant measurement data were available.
Nevertheless, we believe that the models presented should be
useful to investigate the beam stability in a given collider
design.

III. CALCULATION OF BEAM BEHAVIOR USING THE
TWO-DIMENSIONAL POWER SPECTRUM

In this section we want to show how the two-dimensional
power spectrumP(v,k) can be used to describe the beam
stability in a linear collider. We will restrict ourselves to the
effects of displacements at the leading linear order on the

relative beam offset and at the leading quadratic order on the
beam spot size at the interaction point~IP!.

A. Beam offset at the IP

We consider two sections of the linear collider are sym-
metrical relative to the IP~see Fig. 7!. We assume that both
channels have been perfectly aligned at the timet50 on
some reference coordinate@28# xref . Let xi

1 be the transverse
position of the focusing elementi on thee1 side andxi

2 on
the e2 side measured at some later timeT relative to some
reference line as shown in Fig. 7. The elements are enumer-
ated from the entrance of each channel, the first element
having number 1 and the last before the IP numberN. We
assume that the positions of the beams at injectionx0

1 and
x0

2 are related to the position of some element, say, a beam
position monitor, at the entrance of the considered section
@29#. With these assumptions, the time evolution of all the
coordinates (xi

6) i50,N can be described by the two-
dimensional~2D! power spectrum like in Eq.~23!

^@xi
6~T!2xj

6~T!#2&5E
2`

` E
2`

`

P~v,k!2@12cos~vT!#

32$12cos@k~si
6

2sj
6!#%dvdk/~2p!2, ~38!

wheresi
6 is the longitudinal position of thei th element in the

e1 ande2 beam lines.
The most harmful effect of focusing element displace-

ments for the luminosity is the transverse offset (x12x2) of
the opposite beams at the IP. Letai be the first derivative of
the beam transverse displacement at the IP with respect to
the displacement of the elementi . At first order, thee1 and
e2 beam offsets at the IP are given by

x62xref5R11~x0
62xref!1(

i51

N

ai~xi
62xref!, ~39!

whereR is the transfer matrix of the section. We have as-
sumed that the coefficientsai are the same for thee

2 and the
e1 parts. They can be easily calculated using optical func-
tions of the channel. For example, for a short quadrupole,
ai5kir 12, whereki is the integrated strength of the quadru-
pole andr 12 is the element of transfer matrix from this ele-
ment to the IP~for horizontal displacements, for the vertical
one should taker 34). By considering a rigid displacement of
the whole beam line, withx05xi5x, it is easy to show that
they satisfy the identity

(
i51

N

ai512R11. ~40!

Since only the relative displacement of the beams at the
IP influences the luminosity, one can write, for this relative
offset,

x12x25(
i50

N

ai~xi
12xi

2!, ~41!

FIG. 7. Layout of thee1 ande2 parts of a linear collider near
the interaction region.
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with the notation

a05R11. ~42!

The mean valuêx12x2& is equal to zero. The mean square
value is given by

^~x12x2!2&5(
i50

N

(
j50

N

aiaj^~xi
12xi

2!~xj
12xj

2!&. ~43!

To relate the above expression to the variance calculated
from the 2D spectrum by Eq.~38!, one uses the identity

~x12x2!~x32x4!5 1
2 @~x12x4!

21~x22x3!
22~x12x3!

2

2~x22x4!
2#. ~44!

Assuming that the spectrumP(v,k) is homogeneous in such
a way that ^(xi

12xj
1)2&5^(xi

22xj
2)2& and ^(xi

1

2xj
2)2&5^(xi

22xj
1)2&, one gets, for the mean square of the

relative beam offset,

^~x12x2!2&5(
i50

N

(
j50

N

aiaj@^~xi
12xj

2!2&2^~xi
12xj

1!2&#.

~45!

Combining this expression with Eq.~23! allows one to cal-
culate, from a given model of the 2D power spectrum
P(v,k), the time evolution of the rms relative offset after
the timet50 when it is zero.

For a pureATL motion it is simply given by

^~x12x2!2&5AT(
i50

N

(
j50

N

aiaj~ usi
12sj

2u2usi
12sj

1u!. ~46!

In general, Eq.~45! can be expressed as

^~x12x2!2&

5E
2`

` E
2`

`

P~v,k!2@12cos~vT!#G~k!
dv

2p

dk

2p
,

~47!

with the spectral functionG(k) given by

G~k!5(
i50

N

(
j50

N

2aiaj$cos@k~si
12sj

1!#2cos@k~si
12sj

2!#%.

~48!

By taking the origin of the longitudinal coordinates50 at
the IP, one hassi

152si
2 and the above expression simpli-

fies to

G~k!54S (
i50

N

aisin~ksi
1!D 2. ~49!

The positive functionG(k) describes the spectral response to
harmonic excitations of the spatial period of 2p/k, of the
focusing section considered, in terms of relative displace-
ment of beams at the IP. For largek it fluctuates aroundN ~if
all uai u'1). For harmonics with long wavelengths it is pro-
portional tok2, except whenR1250, which is the most in-

teresting case of beam lines with a phase advance equal to a
multiple of p. Indeed one can easily show by tilting the
whole beam line by a constant anglex08 that the coefficients
ai verify to a good approximation, namely, for thin lenses,
the identity

(
i50

N

aisi1R125sIP . ~50!

Since we tooksIP50 in Eq. ~49!, one gets, for smallk,

G~k!.4@kR121O~k3!#2 ~51!

showing that the spectral functionG(k) behaves ask6 for
k→0 if R1250.

OnceG(k) has been calculated for a given focusing struc-
ture, Eq.~47! is useful for comparing the behavior of beams
through this structure in different seismic conditions. It also
allows one to calculate the effect of different parts of the
spatial wave-number spectrum.

B. Beam spot size at the IP

Transverse displacements of focusing elements can gen-
erate other effects at the IP. For example, for the final focus
system of a linear collider the next most important effect is
the spot size growth at the IP induced by dispersion, longi-
tudinal shift of the beam waists, andxy coupling generated
by offset beams in quadrupoles and sextupoles. At first order
in the normalized transfer matrix error at the IP

dQ5dRR21. ~52!

The vertical spot size growth is given by

dsy*

sy*
5
1

2 F S dQ34

by*
D 21S dQ31sx*

sy*
D 21S dQ32sx*

sy*bx*
D 2

1S dQ36sd

sy*
D 2G . ~53!

The first term corresponds to theby waist shift generated by
quadrupole and sextupole horizontal displacements. The sec-
ond and third terms correspond toxy andx8y couplings and
the fourth term to vertical dispersion generated by quadru-
pole and sextupole vertical displacements@30#.

The spot size growth induced by these effects can be cal-
culated as for the offset in Eq.~45! but with different coef-
ficients. For instance, the vertical dispersiondQ36 can be
written as

hy*5dQ365T336~y02yref!1(
i51

N

bi~yi2yref!. ~54!

Again a constant translation of the whole beam line leads to
the identity

(
i51

N

bi52T336 ~55!

in such a way that the dispersion error is given by
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dQ365(
i51

N

bi~yi2y0!. ~56!

As for the offset rms, the dispersion rms error is then related
to the 2D power spectrum through the equality

^~dQ36!
2&5

1

2(i51

N

(
j51

N

bibj@^~yi2y0!
2&1^~yj2y0!

2&

2^~yi2yj !
2&# ~57!

This expression can also be used to defined a spectral func-
tion Gh(k) associated with the dispersion:

Gh~k!5(
i51

N

(
j51

N

bibj$122cos@k~si2s0!#

1cos@k~si2sj !#%. ~58!

By applying the same treatment to the other error terms in
Eq. ~53! and by summing them with the dispersion term, the
time evolution of the vertical spot size of one beam can be
calculated from the 2D power spectrumP(v,k). Since the
horizontal displacements are responsible for the degradation
of the spot size induced by the waist shiftdQ34 term, we will
assume, in the next section, that the horizontal and the ver-
tical ground motion are described by the same power spec-
trum.

IV. APPLICATION TO FINAL FOCUS SYSTEMS

The final focus system~FFS! of a linear collider is the
special optical system placed immediately before the IP. It
provides the required big demagnifications of the transverse
beam dimensions down to the desired beam sizes at colli-
sion.

The FFS’s optics is based on the SLC final focus system
@31,32#. Big demagnifications result in strong focusing of the
beam, which in turn leads to large chromatic aberrations.
These aberrations are compensated in chromatic correction
sections using bending magnets and sextupoles. Usually a
final focus system has a first telescope, two dispersive sec-
tions for correction of the horizontal and vertical chromatici-
ties, and a final telescope. The tightest tolerances to trans-
verse magnet displacements are found in the FFS~last
quadupoles and sextupoles!. It is therefore natural to illus-
trate the use of the above formalism to describe the influence
of ground motion on such systems.

An example of a FFS optics with magnet layout and be-
tatron functions for TESLA@33# is shown in Fig. 8. The
relevant beam parameters at the IP of the main existing linear
collider projects are shown in Table I@2#. The final beam
energy is 250 TeV.bx,y* are the beta functions,sx,y* is the
rms transverse beam size at the IP,sz is the rms bunch
length,sd is the rms relative energy spread within one bunch
or one bunch train, and heref rep is the repetition frequency
of the bunch trains. Usually the repetition rate of collisions
within the same train in the multibunch case is too high for
the trajectory of a single bunch to be corrected separately.
For TESLA, however, this repetition rate~shown in paren-
theses! may be small enough to allow some fast bunch to

bunch correction scheme. One can see from Table I that the
vertical beam sizes at the IP are much smaller than the hori-
zontal ones. We therefore concentrate on the time stability of
the vertical offset and spot size, which are expected to set the
most severe tolerances on displacement.

A. Beam stability in different conditions

The linear response of the FFS optics to ground motion is
mainly characterized by the dimensionless coefficientsai
andbi defined above, namely, the ratio of the vertical beam
displacement and dispersion at the IP to the vertical displace-
ment of each magnet indexed byi . These coefficients are
plotted in Fig. 9 for each magnet of the TESLA FFS. One
can see from these plots that the main contribution to the
beam displacement at the IP comes from the two last qua-
drupoles, while the main sources of dispersion errors are the
first two lenses of the last telescope.

Calculated from these coefficients with Eqs.~49! and
~58!, the spatial spectral functionsG(k) andGh(k) associ-
ated with the vertical relative offset and dispersion are plot-
ted in Fig. 10. For smallk, Gh(k) behaves ask

4 andG(k)
exhibits thek6 behavior predicted in Eq.~51! over a small
range only.

The time evolution of the rms relative vertical beam off-
set, the vertical beam dispersion, and the spot size at the IP
of some FFSs are shown in Figs. 11–13 assuming a perfectly
aligned system att50. They are calculated as explained in
the Sec. III from the 2D power spectrumP(v,k) corre-
sponding to model 1. The offset and dispersion curves of
different colliders behave almost identically because of the
similarity of the FFS designs. The spot size growth at the IP
results mainly from the dispersion~also from waist shift and
x8y coupling for colliders with small energy spread!, there-
fore the size growthds/s is smaller~at a given time! for the
projects with largesy* and smallsd .

The effects of different models can be seen in Figs. 14
and 15, where the vertical beam offset and dispersion at the
IP of TESLA FFSs are shown. The difference between mod-
els 1 and 3 is about one order of magnitude~two orders of
magnitude in luminositydL/L), which shows an uncer-
tainty gate of our assumptions about ground motion in quiet
conditions. One can see that for models 1 and 2 the short

FIG. 8. Dispersionhx and beta functionsbx and by of the
TESLA FFS@33#.
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time behavior of the beam offset is defined by the high-
frequency tail of theATL law and the wave contribution is
not seen yet, while for model 3 at small times these waves
give the main effect. Model 4 gives much larger values at
small times due to cultural noises. The long time offset or
dispersion behavior is defined completely by the diffusive
motion.

These comparisons show also that the impact of the cul-
tural noise is very important for the short time correction of
the offset jitter and is less important for the long time cor-
rection of the dispersion. For TESLA, for example, the tol-
erance on the vertical dispersion from 2% luminosity loss is
around 4mm: it is therefore set by the part of the spectrum
governed by theATL law. On the contrary, the tolerance on

FIG. 9. Coefficients~a! ai and~b! bi , the ratios of the vertical beam displacement and dispersion at the IP to the displacement of each
magnet, versus the magnet name for TESLA FFS. White bars correspond to positive values, black bars to negative ones.

TABLE I. Beam parameters at the IP of final focus systems of TESLA~TeV Energy Superconducting Linear
Accelerator!, SBLC ~S-Band Linear Collider!, JLC ~Japan Linear Collider!, NLC ~Next Linear Collider!,
VLEPP ~Colliding Linear Electron Positron Beams!, and CLIC~Compact Linear Collider!.

Parameter TESLA SBLC JLC NLC VLEPP CLIC

bx,y* (mm) 25,0.7 22,0.8 10,0.1 10,0.1 100,0.2 10,0.18
sx,y* (nm) 845,19 678,30 260,3 320,3.2 2000,6 250,7.5
sz(mm) 0.7 0.5 0.09 0.1 0.75 0.2
f rep(Hz) 5 (1.43106) 50 150 180 300 3200
103sd 1 5 2 2 5 2
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the offset is around 5 nm and corresponds to the offset pre-
dicted after only 1 ms, which is roughly the length of one
bunch train. This means that a continuous offset correction
inside the TESLA bunch train would become required for a
higher level of local noise.

The contribution of different wavelengths to the relative
offset can be clearly seen in the integral

E
0

kdk8

2p E
0

`

P~v,k8!G~k8!2@12cos~vT!#
dv

2p
, ~59!

taken up to a given wave numberk and normalized by its
total value, i.e., by the rms offset according to Eq.~47!. The
regions of wave numbers where it increases rapidly are
therefore the most dangerous ones. This integral is plotted in
Fig. 16 for a TESLA FFS at timeT50.03 s. One can see that
the range of critical wavelengths is from 100 m to a few
meters, comparable to the lattice periods andb functions.
One can see also that for models 1–3 some part of the con-
tribution comes from the nonphysical rangel,1 m ~typical
value of the magnets length!; this part is small, however, and
can be neglected.

FIG. 10. Spectral response functions of the offset (G) and of
dispersion (Gh) for the TESLA FFS.

FIG. 11. Relative vertical rms offset of the beams at the IP
versus time for the FFS of different linear colliders for model 1 of
ground motion.

FIG. 12. Vertical rms dispersion of the beams at the IP versus
time for the FFS of different linear colliders for model 1 of ground
motion.

FIG. 13. Spot size growth at the IP versus time for the FFS of
different linear colliders for model 1 of ground motion.

FIG. 14. Vertical relative rms offset of the beams at the IP for
the TESLA FFS for different models of the power spectrum
P(v,k).
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From the relative offset and spot size variations one can
derive the time corresponding to a loss of luminosity of 2%
induced by either of these effects@34#. Then from the repeti-
tion rate given in Table I, one gets the corresponding number
of pulses, reported in Table II for the models 1–3.

One can see from this table that the number of pulses
corresponding to 2% luminosity loss due to beam offset
caused by ground motion is small~except for CLIC, for
which the situation is more relaxed due to a high repetition
rate!. It means that some fast feedback correction is neces-
sary to keep the beam’s head on at the interaction point. For
TESLA a fast correction within each train seems to be desir-
able: the number of bunches colliding before 2% luminosity
is lost then greatly exceeds the total number of bunches in
one train~given in brackets!.

If the offset of the beams at the IP is eliminated by a
correction scheme, the luminosity degradation is due the
growth of the beam spot size. The number of pulses before
2% luminosity loss is then of the order of 1000 for model 1
and much more for models 2 and 3. Some slow orbit correc-
tion scheme is thus also required to eliminate this effect.

A comparison of the models presented has shown that the
uncertainty of the assumptions put in the base of the models
and, to a greater extent, the uncertainty of local conditions
~cultural noises, quality of the tunnel, etc.! warn us to be
careful in applying the results to a specific project or to a
particular site. Detailed measurements of ground motion at
the specific site seem to be necessary to obtain correct quan-

titative predictions of beam behavior in particular conditions.
We believe, nevertheless, that the present paper can serve as
a framework for this task.

B. Effect of feedback

It has been shown that feedback corrections are necessary
both for beam offset and for beam size stabilization. A con-
sistent consideration of feedback correction schemes in the
framework of the formalism presented requires further stud-
ies; however, some simple estimations of the capability of
such corrections can be made easily.

A feedback correction scheme, for example, such as that
applied on the SLC@3#, can be characterized by the function
F, which shows its performance. For example, it can be
defined as the ratioF( f )5pon( f )/poff( f ), wherepon( f ) and
poff( f ) are the power spectra~of beam motion, for example!
if the feedback is on and off correspondingly.

Let us consider feedback that corrects beam relative offset
at the IP using the previous measurement. One can easily see
that for small frequencyf the performance of such feedback
will be good: F( f )5( f / f c)

2 for f! f c , while at high fre-
quencies the feedback gives no effect:F( f )51 for f@ f c . In
the ideal casef c5 f rep/(2p). One can take, for simplicity,
F( f )5( f / f c)

2 for f, f c andF( f )51 for f. f c .
The effect of this feedback can be estimated in the fol-

lowing way. The equilibrium~i.e., at T→`) value of the

FIG. 15. Vertical rms dispersion at the IP of the TESLA FFS for
different models of the power spectrumP(v,k).

FIG. 16. Normalized integrated contribution of spatial harmon-
ics from k850 up to k85k to the beam offset at the IP for the
TESLA FFS atT50.03 s for different models of the power spec-
trum.

TABLE II. Number of pulses corresponding to 2% luminosity loss due to relative vertical offset (Ndy
) or

vertical spot size growth (Ns
y*
) at the IP of different projects for models 1–3 of ground motion in quiet

conditions.

Parameter Model TESLA SBLC JLC NLC VLEPP CLIC

Ndy 1 1 (@1000) 15 4 5 15 220
Ndy 2 4 (@1000) 75 22 27 77 1200
Ndy 3 15 (@1000) 370 60 75 260 4200

Ns
y*

1 210 650 370 450 540 17000
Ns

y*
2 350 1700 1800 2100 2700 66000

Ns
y*

3 21000 65000 18000 22000 30000 1.73106
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offset in the presence of the feedback is

^~x12x2!2&`→E
2`

` E
2`

`

P~v,k!2F~v!G~k!
dv

2p

dk

2p
.

~60!

Here we assumed thatF(v) does not depend onk and feed-
back adds no errors to beam motion~due to errors of beam
position measurements, for example!; otherwise a term cor-
responding to the feedback-produced noises should be added
to ~60!. Comparing Eqs.~60! and ~47!, one can see that for
the chosenF(v) the following approximation can be writ-
ten:

^~x12x2!2&`'^~x12x2!2& atT5A2/~2p f c!. ~61!

Using this expression and making a conservative assump-
tion that f c5 f rep/30 ~which corresponds to the value
achieved at SLAC@3#; better values should be possible, how-
ever!, one can find the equilibrium value of the offset for
different colliders for different models of the power spec-
trum. The results are shown in Table III.

Table III shows that in quiet conditions the feedback with
f c5 f rep/30 allows one to keep luminosity with precision
much better than 2% for models 2 and 3 of ground motion.
For the most pessimistic model 1 the valuedL/L is about
6% „sincedL/L'2@dy/(2sy* )#

2
…. One can qualitatively

conclude that in a quiet place the luminosity losses due to
beam offset caused by ground motion can be eliminated by a
feedback correction. Again, the correct quantitative predic-
tion for particular conditions requires detailed studies of a
specific feedback scheme, including an analysis of feedback
produced errors. On the other hand, in noisy conditions
~model 4! significant luminosity losses can be avoided only
if a faster orbit correction~such as bunch to bunch! or addi-
tional stabilization of magnet positions is used.

V. CONCLUSION

The influence of ground motion is expected to be very
important for future TeV linear colliders. It will require pre-
cise alignment techniques probably combined with damping
of the magnet vibrations. To describe this influence quanti-
tatively in terms of beam properties and luminosity at the IP,
we propose to use the power spectrumP(v,k), previously
introduced by one of the present authors. This two-
dimensional power spectrum describes both the time and
spatial properties of ground motion. It also encompasses the
power spectra associated with the absolute and the relative
displacements such as theATL law describing slow diffusive
motion. Various expressions of this spectrum can be made to
model the information about absolute and relative measure-
ments of ground motion. We have derived four such models
to account for typical low or high cultural noise conditions.

We then described the formalism, which allows one to
express the time evolution of typical beam properties, such
as beam offset, dispersion, or spot size, for a beam line sub-
mitted to transverse vibrations corresponding to a given
power spectrumP(v,k) of ground motion. This formalism
has been applied to analyze the sensitivity of various final
focus systems for linear collider designs to ground vibrations
over short and long time ranges, using and comparing differ-
ent approximations of the power spectra. Finally, in the
framework of the formalism considered, a capability of feed-
back to keep luminosity has been estimated.
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